Math 217 Fall 2025 Quiz 19 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Let $\mathfrak{B} = (v_1, \dots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinates of v are ...

Solution: The unique scalars $a_1, \ldots, a_d \in \mathbb{R}$ (or in the base field) such that

$$v = a_1 v_1 + \dots + a_d v_d.$$

(b) Let $\mathfrak{B} = (v_1, \ldots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinate column vector of v is ...

Solution: The column vector formed by the \mathfrak{B} -coordinates of v:

$$[v]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix}$$
 where $v = a_1v_1 + \dots + a_dv_d$.

(c) Suppose X and Y are sets. A function $f: X \to Y$ is called *surjective* provided that ...

Solution: For every $y \in Y$ there exists $x \in X$ such that f(x) = y; equivalently, $\operatorname{im}(f) = Y$.

- 2. Let $\mathfrak{B} = (\vec{v}_1, \vec{v}_2)$, where $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
 - (a) Let \vec{w} be the vector whose \mathfrak{B} -coordinates are $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$. What is $[\vec{w}]_{\mathcal{E}}$?

Solution:

$$\vec{w} = 2\vec{v}_1 + (-1)\vec{v}_2 = 2\begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

Hence
$$[\vec{w}]_{\mathcal{E}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

(b) Let \vec{v} be such that $[\vec{v}]_{\mathfrak{B}} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$. Represent \vec{v} in standard coordinates. Find $[\vec{e}_1]_{\mathfrak{B}}$ and $[\vec{e}_2]_{\mathfrak{B}}$.

$$\vec{v} = \frac{1}{2}\vec{v}_1 + \frac{1}{2}\vec{v}_2 = \frac{1}{2}\begin{bmatrix} 1\\1 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} = \vec{e}_2.$$

To find $[\vec{e}_1]_{\mathfrak{B}}$, solve $a\vec{v}_1 + b\vec{v}_2 = \vec{e}_1$:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ \Rightarrow \ a = \frac{1}{2}, \ b = -\frac{1}{2},$$

so
$$[\vec{e}_1]_{\mathfrak{B}} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$
. Similarly, for \vec{e}_2 :

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies a = b = \frac{1}{2},$$

so
$$[\vec{e}_2]_{\mathfrak{B}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
 (consistent with $\vec{v} = \vec{e}_2$ above).

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) If $V = \mathbb{R}^{2 \times 2}$ with basis $\mathfrak{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$, then the \mathfrak{B} -coordinates of

$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} \text{ are } \begin{bmatrix} 4 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

Solution: FALSE. If $A = c_1B_1 + c_2B_2 + c_3B_3 + c_4B_4$ (in the listed order), matching entries gives

$$a_{11} = c_1 + c_2 + c_3 + c_4 = 2,$$

$$a_{12} = c_2 + c_3 + c_4 = 2,$$

$$a_{21} = c_3 + c_4 = 3,$$

$$a_{22} = c_4 = 4.$$

Solving: $c_4 = 4$, $c_3 = -1$, $c_2 = -1$, $c_1 = 0$. Thus

$$[A]_{\mathfrak{B}} = \begin{bmatrix} 0 \\ -1 \\ -1 \\ 4 \end{bmatrix}.$$